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Abstract. Recent publications on the configurational properties of polymer chains subject 
to excluded volume restraints, as deduced from studies of off-lattice model chains, are 
briefly reviewed. It is shown that the data for such models cast doubt on the validity of the 
frequently quoted equations ( R i )  = aN6l5 and ( S i )  = I J ’ N ~ / ~  where ( R i )  and ( S i )  are 
respectively the mean square end-to-end length and mean square radius of gyration of 
N-link chains, and a and a’ are constants. The use of the technique of inversely restricted 
sampling to generate off-lattice model chains, with either freely varying or fixed bond angles, 
and free rotation about bonds, is described. An analysis of the configurational properties 
of such chains is presented in the following paper. 

1. Introduction 

In recent years the theoretical study of the configurational properties of real polymer 
chains has attracted considerable interest. Approximate analytical solutions of the 
excluded volume problem, ie the determination of the chain expansion due to the fact 
that no two monomers can occupy the same volume, as distinct from a completely 
free random walk model, have been presented by several authors, eg Flory (1949), 
Edwards (1965), Flory and Fisk (1966), Reiss (1967), Alexandrowicz (1967a, b), 
Naghizadeh (1968), Yamakawa (1968, 1971), Freed (1971), and de Gennes (1972). Two 
other numerical approaches have also been employed, namely direct enumeration of 
short chain configurations (Domb 1960) and Monte Carlo techniques (Wall et al 1954). 
A comprehensive bibliography has been published by Domb (1969). 

It has been suggested in many of these analytical and numerical papers that the 
mean square end-to-end length ( R i )  of a three-dimensional polymer chain of N links, 
subject to excluded volume restraints, is given at large N by 

where y = $ and a is a constant determined by link length, and, in the case of chains 
confined to a lattice framework, the type of lattice. The Monte Carlo and direct enumer- 
ation results also suggest that the mean square radius of gyration ( S i )  has the same 
functional dependence on N ,  and that 

( R i )  = aNY (1) 

( S i ) / (  Ri) = 0.1 57 0.002. (2) 
A large majority of the direct enumeration and Monte Carlo results have been 

compiled from analyses of chains constructed on various lattice frameworks, eg simple 
cubic, body-centred cubic, tetrahedral. The main advantages of on-lattice construction, 
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as distinct from a regime in which varying bond angles and free rotation about bonds 
are permitted, are the relative simplicity of checking for violation of the excluded volume 
conditions, and the reduced incidence of such violation. Furthermore, since values very 
close to 4 for the exponent y of equation (1) have been obtained on a variety of lattices, 
together with ( S i ) / ( R i )  ratios in good agreement with the figure 0.157 of equation (2), 
it has been conjectured (Domb 1963) that the dimensionality of the lattice, rather than 
its stuctural detail, determines in large measure the configurational properties of the 
chains. The corresponding equations in two dimensions, as determined from direct 
enumeration and Monte Carlo studies, are 

( R i )  = bN3I2 

( S i ) / (  R i )  = 0.140 f 0.002. 

Despite the agreement between several independent workers on the properties of 
on-lattice chains, it is not yet certain that a lattice model is appropriate to real polymers 
(Edwards 1970), and hence the dependence of ( R i )  and ( S i )  on N quoted above may 
not be correct for such systems. This would imply important consequences for many 
areas of polymer physics research, eg light scattering, diffusion viscosity, sedimentation 
and osmotic pressure, in which specific configurational models are usually assumed in 
order to interpret experimental data. 

We consider now the evidence against y = 2. The analytical treatment of Alex- 
androwicz (1967a, b), in which excluded volume interactions are treated in terms of 
Gaussian probabilities for intersegmental contacts, predicts ( R i )  asymptotically 
proportional to Reiss (1967) used a variation principle to develop a single- 
segment self-consistent field treatment, somewhat similar to the method introduced by 
Edwards (1965), and found ( R i )  proportional to N4I3; however a refinement due to 
Yamakawa (1968) gave y = 2. Des Cloizeaux (1970) treated the case of repulsive 
interactions between all points of the chain, using a minimal Gaussian approximation, 
and also obtained y = 4.  The Lagrangian theory of de Gennes (1972) yields y - 1.195. 
Whittington and Dunfield (1973), using an approach analogous to the Born-Green-Yvon 
analysis of liquids, estimated y = 1.569 and 1.574 for square and triangular two- 
dimensional lattices respectively, and y = 1.258 and 1.246 for simple cubic and face- 
centred cubic three-dimensional lattices respectively. Although the differences between 
lattice types of the same dimensionality are small, their departure from the widely 
accepted 3 (two-dimensional) and 4 (three-dimensional) ratios is significant. Authors 
using Monte Carlo techniques have avoided the limitations of on-lattice chain construc- 
tion to varying extents. Unfortunately the much increased computing time requirement 
has usually restricted the calculations to chains not exceeding approximately 300 links 
(compare 1700-link chains generated on a lattice by Wall and Erpenbeck 1959). We now 
list this work in chronological order. 

(i) Windwer (1965) generated 100-link chains with alternate tetrahedral and cubic 
lattice bonds, the bond length remaining constant at 3lI2, and found, from log-log plots, 

( R i )  = 2.77N"29 

( S i )  = 0.39N1'32 

( S i ) / ( R i )  = 0.158 (on average). 

The small non-systematic variation in the tabulated values of ( S i ) / ( R i )  for various 
N is surprising, in view of the difference between the two exponents. 
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(ii) Rice and Windwer (1965) attempted to simulate the effects of varying excluded 
volume by working on a tetrahedral lattice and discarding varying fractions of the 
chains which self-intersected. Writing 

( R i )  = aNY 

( S i )  = a'NY' 
(3) 

they found minimum values of 1.172 and 1.176 for y and y' respectively, and a steady 
increase in both as the excluded volume restrictions were made more stringent. This 
behaviour contrasts with the analytical predictions of a discontinuity in the value of y 
between zero for a completely free random walk and $ (in three dimensions) for any 
finite excluded volume. 

(iii) Gallacher and Windwer (1966) generated branched chains on a tetrahedral 
lattice, the branches being of varying lengths but short in comparison with the main 
chain length of 200 links. The spacing of the branches along the backbone was also 
varied. Once again values of y and y' (equations (1) and (3)) differing significantly from 
the lattice value of Q were observed, both indices tending to increase with increasing 
branch length and decreasing branch spacing. However, the ( S i ) / (  R i )  ratio was 
found to settle down to values close to  0.1 57 for all branch length/branch spacing choices, 
in agreement with the results for linear chains constructed on a lattice. 

(iv) Fleming (1967, 1968) investigated 100-link chains in the continuum, allowing 
freely varying bond angles and completely free rotation about bonds. He also varied 
the size of the excluded volume by varying the diameters of the hard spheres representing 
the monomer units of the chain with respect to a constant bond length. Defining an 
excluded volume ratio U by 

diameter of hard spheres 
bond length 

U =  (4) 

he found y = 1.05, 1.06 and 1.18 for U = 0.1,0.2 and 0.5 respectively. 
(v) Mark and Windwer (1967) generated self-avoiding walks up to 200 steps on a 

tetrahedral lattice, and extended the excluded volume condition to incorporate first 
non-bonded nearest neighbours. They obtained y = 1.255, in good agreement with 
some direct enumeration studies of Mazur and Joseph (1963), and interpreted their 
result as showing the dependence of y on the excluded-volume parameters, ie y is not 
determined uniquely by the dimensionality of the lattice. 

(vi) Loftus and Gans (1968) considered chains with a fixed bond length and bond 
angle of 109.5" (the tetrahedral angle), the monomers being represented by hard spheres 
with diameters equal to the bond lengths. Allowed rotation about the bonds was 
varied from three discrete positions (one trans and two gauche) to complete freedom, 
and chain lengths from 20 to 100 links were investigated. Values of y and y' considerably 
larger than $ were found, even for rotations as small as & 1" about the three discrete 
lattice positions. The ( S i ) / ( R i )  ratio also nearly always fell below the lattice range 
0.157 * 0.002. 

(vii) Alexandrowicz and Accad (1971), using a 'dimerization' process introduced by 
Alexandrowicz (1969) to overcome excluded volume sample attrition, built 8192-link 
chains on a four-choice cubic lattice and found that ( R i ) ,  although proportional to 
N6I5 up to about 1500 links, increased more slowly towards the end-points of the chains. 
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(viii) La1 and Spencer (1971) used an improved model of n-alkane molecules which 
incorporated the known rotational preferences around the C-C bonds in such molecules, 
different C-C and C-H bond lengths, and representation of long-range intersegmental 
interactions by Lennard-Jones potentials. Consequently the chains were not constrained 
to a tetrahedral lattice. They found y and y' lying in the ranges 0.79 to 1.25 and 1.07 to 
1.35 respectively, although their calculations were restricted to 50-link chains. 

(ix) Warvari et a1 (1972) investigated randomly coiling polysarcosine and poly-N- 
methyl-L-alanine using hard sphere models with relative radii (H, C, N, 0, CH,, NH,) 
appropriate to these compounds. Assuming that the peptide bonds were fixed in the 
planar trans configuration, they limited rotation about the backbone N-C" and C"-C' 
single bonds to certain discrete values. From an analysis of chains of around 300 links 
in length they concluded that there is a continuum of possible y and y' values stretching 
from unity at zero excluded volume to above 2, and that ( S i ) / ( R i )  is less than b .  

(x) Lemaire et a1 (1974) restricted their calculations to polyethylene chains on a 
tetrahedral lattice, and investigated two distinct models, namely one in which it was 
assumed that the positions corresponding to the three internal rotation angles of o", 
+ 120" and - 120" were equally probable, and a second more realistic model in which 
the potential energy for rotation about a given bond depended only on the rotational 
states of the nearest-neighbour bonds. Performing calculations for 2000-link chains, 
they obtained y = 1.188 for the first model, a result which they regarded as supporting 
the y = f school, but for the second model they estimated y = 1.09+0.01. 

After consideration of the above data, two questions spring immediately to mind. 
Firstly, if there exists a unique asymptotic value of y for three-dimensional lattice- 
constrained chains, is it 2, and secondly, what is the corresponding value for off-lattice 
chains? We are concerned here only with the second of these questions. An unambiguous 
answer has not yet been given, because of the relatively short chains to which calculations 
have been restricted by computing time requirements. We have therefore investigated 
longer (up to 504 links) chains over the range of excluded volume ratio (see equation (4)) 
t' = zero to unity, for both freely varying and fixed bond angles, and with free rotation 
about the bonds in both cases. 

In this paper we describe the method of chain generation, in particular the modifica- 
tions required in order to use the technique of inversely restricted sampling to generate 
off-lattice chains ; in the following paper we present our results and conclusions. 

2. Off-lattice chain construction 

Following Fleming (1967), the monomer units of the chains are represented as hard 
spheres, the bond length is set at unity, and the choice of sphere diameter then determines 
the excluded volume ratio U. The centre of the first sphere of each chain is taken as the 
origin of coordinates, and two calls to the pseudo-random number generator (Control 
Data Corporation FORTRAN RANF) then give the values of cos 8 and 4(0 -2n) required 
to determine the direction of the first link, in the case of freely varying bond angles. 
Random generation of cos 8 and 4, rather than 8 and 4, ensures that the probability 
distribution of the link direction is constant over the surface of a sphere. In the case of 
fixed bond angles, equated to the tetrahedral angle 109-5", the value of 4 only is required. 
One or two further calls to RANF then give a proposed position for the third sphere, 
which is accepted or rejected after inspection for intersection with the first sphere. If 
intersection occurs, another choice of cos 8 and 4 (or 4 only) gives an alternative position 
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for the third sphere, and the process is continued, if necessary, until an acceptable site 
is found. In this way, chains of the required number of links can be constructed, the 
major limitation being computing time. 

Neglecting considerations of sample size, unbiased statistics on the configurational 
properties of the chain would be obtained if the construction of a given chain were 
discontinued immediately two spheres intersected, ie immediately the excluded volume 
condition was violated. Since construction was continued, in our calculations, simply 
by choosing an alternative site, the resulting statistics must be biased. More specifically, 
we would expect to obtain a smaller value of y (Fleming 1967). This bias may be removed 
using a modification of the method of inversely restricted sampling. 

3. Inversely restricted sampling 

Inversely restricted sampling is one of two techniques commonly used to reduce sample 
attrition due to violation of excluded volume conditions, the other being the sample 
enrichment technique of Wall and Erpenbeck (1959). Both were used in this study, 
mainly the former. The use of the latter in an off-lattice context is straightforward, and 
will not be discussed further. Hammersley and Morton (1954) have described the method 
of inversely restricted sampling in detail ; Rosenbluth and Rosenbluth (1955) and Mazur 
and McCrackin (1968) have used it successfully in studies of on-lattice chains. We now 
briefly describe its use in constructing chains in the continuum. 

3.1. Chains with freely varying bond angles 

Figure 1 shows a number of shaded spheres of diameter v representing the initial mono- 
mers of a chain, the distance between centres of consecutive spheres being unity. Thus 
the locus of the centre of sphere N + 1 is a spherical surface with radius unity and centre 
coincident with the centre of sphere N .  If N 2 2, a given choice of cos 8 and 4 may define 
a proposed position of sphere N + 1 such that it would intersect one or more previously 
added spheres, thereby contravening the excluded volume conditions. More specifically, 
since the distance of closest approach of the centres of any two spheres is equal to their 

Figure 1. Model polymer chain with freely varying bond angles subject to excluded volume 
conditions. Each monomer unit is represented by a sphere of diameter U. The distance 
between centres of consecutively added spheres is unity. 



934 N C Smith and R J Fleming 

diameter U, an exclusion is indicated when a circle of radius U centred on a previously 
added sphere intersects the spherical surface which is the locus of the centre of sphere 
N + 1. Three such exclusions are shown in figure 1, that due to sphere N - 1 always being 
present. Since centre N -k 1 must be positioned elsewhere on the locus, we may define 
the multiplicity pN of the Nth link (joining spheres N and N + 1) by 

total area of locus of centre N + 1 
PN = area of locus not excluded by previously added spheres ' 

The size of the excluded area, ie the size of the cap of the larger sphere in figure 2, is 

Locus o f  centre 
o f  sphere ( N + I )  

Figure 2. Exclusion of part of the locus of centre N + 1 by previously added sphere L (freely 
varying bond angles). 

readily calculated. Denoting the L-N inter-centre distance by I ,  and the height of the 
cut-off plane above centre N by c, 

2n sin 0 de  = 2n( 1 - c) 
~ o c o ' - ' c  

Excluded area on locus = 

where c = (1 - U' + 1*)/21. The same result is obtained if the centre of the interfering 
sphere L is located inside the locus of centre N + 1. The total excluded area E ,  is then 
obtained, in the simplest case, by summing over all interfering spheres i ,  giving 

E ,  = 2nC(1-ci)  
i 

and a multiplicity 

1 
1 -[03 X i  (1 -ci)]' 

- - 4n 
PN = 471 -271 Xi (1 - ci) 

Complexities arise when two or more previously added spheres exclude the same 
part of the locus. A simple summation such as that quoted immediately above would 
then overestimate the excluded area of the locus. In practice it was found that overlap 
on the locus involving three or more spheres was a very rare occurrence, less than 1 % 
of all multiple exclusions, and hence we consider double overlap only, eg that shown 
in figure 3 for two spheres centred on L ,  and L,. Overlap occurs when the distance 
between the centres of the two cut-off planes is less than the sum of their radii, ie when 
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Figure 3. Exclusion of the same part of the locus of centre N + 1 by previously added spheres 
L ,  and L ,  (freely varying bond angles). 

010, < R I  + R , .  If the angle subtended at the centre of sphere N by LIL, is U, then, 
denoting the overlap angle by 8, 

e = y1+y2-u 

1 1: + 1; - (L,L2)2 
2412 

= cos-1c1+cos-1c2-cos-1 

where 1 and c are as defined earlier. Although the shape of the overlap surface is generally 
asymmetric, it may be approximated by a circular cap of radius BH at a height N H  above 
N where 

BH = sin(8/2) and NH = cOs(ep). 

Hence the excluded area common to both spheres is 2 4 1  -cos i8)  where 

cos 8 = ( c o s c ~ ) ( c ~ c ~ -  RlR,)+(sina)(Rlc,+c1R,). 

The correct total excluded area E ,  is then 

summing over overlapping pairs i , j .  Since the total area of the spherical surface is 4n, 
the multiplicity PN of the Nth link is given by 

1 [ 1- (1 + Y S  eij) lI2]} 

j > i  

The statistical weight W, of any N-link chain is then 
N 

k =  1 
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3.2. Chains withJixed bond angles 

In this slightly more realistic model of a polymer chain the bond angle is fixed at the 
tetrahedral angle 109.5", and hence the locus of the centre of sphere N +  1 is the rim of a 
cone with sloping side of length unity, making an angle of 70.5" with the direction of the 
( N -  1)th link (see figure 4). The calculation of multiplicities for this model is a more 
complex exercise in geometry, but since it is an obvious extension of the approach just 
described, further details will not be given. 

0 = 109.50 

) t h  

Y - 
0 

Figure 4. Model polymer chain with fixed bond angles (the tetrahedral angle 109.5'), 
subject to excluded volume conditions. 

4. Computation and timings 

Separate programs embodying the freely varying and fixed bond angle models were 
written in FORTRAN and run on the Monash University Control Data Corporation 3200 
computer. The method used to  store the coordinates of the individual monomer units 
in the computer memory, and to check for violation of the excluded volume conditions, 
was very similar to that described by Fleming (1967). The time taken to generate each 
link in the chain was approximately constant from the 20th link onwards, and increased 
only slightly with increasing U. Samples of lo00 100-link freely varying and fixed bond 
angle chains were constructed in thirty and forty minutes respectively, more time being 
required in the latter case because of the many coordinate transformations which were 
necessary. A given chain was abandoned before it reached the required length only in 
the very rare event that the locus of the centre of the next sphere to  be added was totally 
excluded, ie the end-point was completely surrounded by other spheres. 

Values of R i  and S i  and the associated multiplicities pN for a given chain under 
construction were held in the computer memory until the chain contained the required 
number of links. Multiplicity-weighted R i  and S i  were then added to a cumulative 
total, representing typically 1000 chains, from which the dependence of ( R i )  and 
( S i )  on N ,  and any other required information, was deduced. Re-start options were 
included in the programs so that chain generation, say for a given excluded volume ratio, 
could be continued through a series of computer bookings. 
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Exhaustive tests made on the pseudo-random number generator subroutine RANF 
(CDC3200) showed it to be suitable for this application, eg there was no significant 
correlation between successive members of the test sequence generated, over the range 
zero to unity, the numbers also being evenly distributed about 0.5. 
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